Share Email Print
cover

Proceedings Paper

Acoustic network event classification using swarm optimization
Author(s): Jerry Burman
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

Paper Details

Date Published: 22 May 2013
PDF: 11 pages
Proc. SPIE 8742, Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IV, 87420V (22 May 2013); doi: 10.1117/12.2018250
Show Author Affiliations
Jerry Burman, Intelligent Recognition Systems (United States)


Published in SPIE Proceedings Vol. 8742:
Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IV
Tien Pham; Michael A. Kolodny; Kevin L. Priddy, Editor(s)

© SPIE. Terms of Use
Back to Top