Share Email Print
cover

Proceedings Paper

Thermal imaging to detect physiological indicators of stress in humans
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Real-time, stand-off sensing of human subjects to detect emotional state would be valuable in many defense, security and medical scenarios. We are developing a multimodal sensor platform that incorporates high-resolution electro-optical and mid-wave infrared (MWIR) cameras and a millimeter-wave radar system to identify individuals who are psychologically stressed. Recent experiments have aimed to: 1) assess responses to physical versus psychological stressors; 2) examine the impact of topical skin products on thermal signatures; and 3) evaluate the fidelity of vital signs extracted from thermal imagery and radar signatures. Registered image and sensor data were collected as subjects (n=32) performed mental and physical tasks. In each image, the face was segmented into 29 non-overlapping segments based on fiducial points automatically output by our facial feature tracker. Image features were defined that facilitated discrimination between psychological and physical stress states. To test the ability to intentionally mask thermal responses indicative of anxiety or fear, subjects applied one of four topical skin products to one half of their face before performing tasks. Finally, we evaluated the performance of two non-contact techniques to detect respiration and heart rate: chest displacement extracted from the radar signal and temperature fluctuations at the nose tip and regions near superficial arteries to detect respiration and heart rates, respectively, extracted from the MWIR imagery. Our results are very satisfactory: classification of physical versus psychological stressors is repeatedly greater than 90%, thermal masking was almost always ineffective, and accurate heart and respiration rates are detectable in both thermal and radar signatures.

Paper Details

Date Published: 22 May 2013
PDF: 15 pages
Proc. SPIE 8705, Thermosense: Thermal Infrared Applications XXXV, 87050I (22 May 2013); doi: 10.1117/12.2018107
Show Author Affiliations
Carl B. Cross, Wright State Univ. (United States)
Julie A. Skipper, Wright State Univ. (United States)
Douglas T. Petkie, Wright State Univ. (United States)


Published in SPIE Proceedings Vol. 8705:
Thermosense: Thermal Infrared Applications XXXV
Gregory R. Stockton; Fred P. Colbert, Editor(s)

© SPIE. Terms of Use
Back to Top