Share Email Print

Proceedings Paper

Semantic data association for planar features in outdoor 6D-SLAM using lidar
Author(s): C. Ulas; H. Temeltas
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Simultaneous Localization and Mapping (SLAM) is a fundamental problem of the autonomous systems in GPS (Global Navigation System) denied environments. The traditional probabilistic SLAM methods uses point features as landmarks and hold all the feature positions in their state vector in addition to the robot pose. The bottleneck of the point-feature based SLAM methods is the data association problem, which are mostly based on a statistical measure. The data association performance is very critical for a robust SLAM method since all the filtering strategies are applied after a known correspondence. For point-features, two different but very close landmarks in the same scene might be confused while giving the correspondence decision when their positions and error covariance matrix are solely taking into account. Instead of using the point features, planar features can be considered as an alternative landmark model in the SLAM problem to be able to provide a more consistent data association. Planes contain rich information for the solution of the data association problem and can be distinguished easily with respect to point features. In addition, planar maps are very compact since an environment has only very limited number of planar structures. The planar features does not have to be large structures like building wall or roofs; the small plane segments can also be used as landmarks like billboards, traffic posts and some part of the bridges in urban areas. In this paper, a probabilistic plane-feature extraction method from 3DLiDAR data and the data association based on the extracted semantic information of the planar features is introduced. The experimental results show that the semantic data association provides very satisfactory result in outdoor 6D-SLAM.

Paper Details

Date Published: 17 May 2013
PDF: 11 pages
Proc. SPIE 8741, Unmanned Systems Technology XV, 87410C (17 May 2013); doi: 10.1117/12.2017966
Show Author Affiliations
C. Ulas, TÜBİTAK (Turkey)
H. Temeltas, Istanbul Technical Univ. (Turkey)

Published in SPIE Proceedings Vol. 8741:
Unmanned Systems Technology XV
Robert E. Karlsen; Douglas W. Gage; Charles M. Shoemaker; Grant R. Gerhart, Editor(s)

© SPIE. Terms of Use
Back to Top