Share Email Print
cover

Proceedings Paper

Rejection of fluorescence from Raman spectra of explosives by picosecond optical Kerr gating
Author(s): Ida Johansson; Bernhard Zachhuber; Markus Nordberg; Henric Östmark
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper describes how optical Kerr gating can be used for effective rejection of fluorescence from Raman spectra of explosives and explosives precursors. Several explosives are highly fluorescent, and this method enables Raman detection of explosives materials that would else be complicated or impossible to identify. Where electronic cameras (intensified charge-coupled devices, ICCDs) have showed not yet to be sufficiently fast to be used for rejection of this fluorescence, Kerr gating is here proved to be an efficient alternative, demonstrated by measurements on plastic explosives. Results were obtained using a gating time of ~30 ps. The Kerr gate was driven by the fundamental mode of an Nd:YAG laser, at 1064 nm, with pulses of ~8 mJ, 50 Hz and 30 ps. CS2 was used as a Kerr medium and Glan polarizing prisms were important features of the system. Raman spectra were obtained using a 532 nm probe wavelength, from the same Nd:YAG laser being frequency doubled, with a ~2 mJ pulse energy. Gating times of ~30 ps were thus achieved, with a fluorescence rejection factor of more than 1300, for the first time revealing detailed characteristics in Raman spectra from highly fluorescent PETN based plastic explosive.

Paper Details

Date Published: 29 May 2013
PDF: 8 pages
Proc. SPIE 8710, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV, 87100R (29 May 2013); doi: 10.1117/12.2017863
Show Author Affiliations
Ida Johansson, Swedish Defence Research Agency (Sweden)
Bernhard Zachhuber, Swedish Defence Research Agency (Sweden)
Markus Nordberg, Swedish Defence Research Agency (Sweden)
Henric Östmark, Swedish Defence Research Agency (Sweden)


Published in SPIE Proceedings Vol. 8710:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV
Augustus Way Fountain, Editor(s)

© SPIE. Terms of Use
Back to Top