Share Email Print
cover

Proceedings Paper

Controlled fabrication of advanced functional structures on the nanoscale by means of electron beam-induced processing
Author(s): Sebastian W. Schmidt; Johann Foucher; Christian Penzkofer; Bernd Irmer
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The controlled deposition of materials by means of electron beam induced processing (EBIP) is a well-established patterning method, which allows for the fabrication of nanostructures with high spatial resolution in a highly precise and flexible manner. Applications range from the production of ultrathin coatings and nanoscaled conductivity probes to super sharp atomic force microscopy (AFM) tips, to name but a few. The latter are typically deposited at the very end of silicon or silicon-nitride tips, which are fabricated with MEMS technologies. EBIP therefore provides the unique ability to converge MEMS to NEMS in a highly controllable way, and thus represents an encouraging opportunity to refine or even develop further MEMS-based features with advanced functionality and applicability. In this paper, we will present and discuss exemplary application solutions, where we successfully applied EBIP to overcome dimensional and/or functional limitations. We therefore show the fabrication stability and accuracy of “T-like-shaped” AFM tips made from high density, diamond-like carbon (HDC/DLC) for the investigation of undercut structures on the base of CDR30-EBD tips. Such aggressive CD-AFM tip dimensions are mandatory to fulfill ITRS requirements for the inspection of sub-28nm nodes, but are unattainable with state-of-art Si-based MEMS technologies today. In addition to that, we demonstrate the ability of EBIP to realize field enhancement in sensor applications and the fabrication of cold field emitters (CFE). For example: applying the EBIP approach allows for the production of CFEs, which are characterized by considerably enhanced imaging resolution compared to standard thermal field emitters and stable operation properties at room temperature without the need for periodic cathode flashing – unlike typical CFEs. Based on these examples, we outline the strong capabilities of the EBIP approach to further downscale functional structures in order to meet future demands in the semiconductor industry, and demonstrate its promising potential for the development of advanced functionalities in the field of NEMS.

Paper Details

Date Published: 17 May 2013
PDF: 6 pages
Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 876316 (17 May 2013); doi: 10.1117/12.2017430
Show Author Affiliations
Sebastian W. Schmidt, nanotools GmbH (Germany)
Johann Foucher, CEA-Leti (France)
Christian Penzkofer, nanotools GmbH (Germany)
Bernd Irmer, nanotools GmbH (Germany)


Published in SPIE Proceedings Vol. 8763:
Smart Sensors, Actuators, and MEMS VI
Ulrich Schmid; José Luis Sánchez de Rojas Aldavero; Monika Leester-Schaedel, Editor(s)

© SPIE. Terms of Use
Back to Top