Share Email Print
cover

Proceedings Paper

The AGIPD System for the European XFEL
Author(s): Laura Bianco; J. Becker; R.D. Dinapoli; E. Fretwurst; P. Goettlicher; H. Graafsma; D. Greiffenberg; M. Gronewald; B. Henrich; H. Hirsemann; S. Jack; R. Klanner; A. Klyuev; H. Krueger; A. Marras; A. Mozzanica; S. Rah; B. Schmitt; X. Shi; U. Trunk; J. Schwandt; J. Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The European XFEL will generate extremely brilliant pulses of X-rays organized in pulse trains consisting of 2700 pulses <100 fs long, with <1012 photons, and with a 220 ns spacing. The pulse trains are running at a 10Hz repetition rate. The detector to be used under these conditions will have to face several challenges: the dynamic range has to cover the detection of single photons and extend up to <104 photons/pixel/pulse in the same image, framing rates of 4.5 MHz (220 ns) are required in order to record one image per pulse, and as many images as possible have to be recorded during the pulse trains. Due to the high flux, the detector will have to withstand a dose up to 1GGy integrated over 3 years. To meet these challenges a consortium, consisting of Deutsches Elektronensynchrotron (DESY), Paul-Scherrer-Institut (PSI), University of Hamburg and University of Bonn, is developing the Adaptive Gain Integrating Pixel Detector (AGIPD). It is a hybrid-pixel detector, featuring a charge integrating amplifier with dynamic gain switching to cope with the extended dynamic range, and an analogue on-pixel memory for image storage at the required 4.5 MHz frame rate. The readout chip consists of 64×64 pixels of (200μm)2, 8×2 of these readout chips are bump-bonded to a monolithic silicon sensor to form the basic module with 512 × 128 pixels. 4 of these modules are stacked to form a quadrant of the 1k ×1k detector system. Each quadrant is independently moveable in order to adjust a central hole, needed for the direct beam to pass through. Special designs are employed for both the sensor and the readout chip to withstand the integrated dose for 3 years.

Paper Details

Date Published: 3 May 2013
PDF: 7 pages
Proc. SPIE 8778, Advances in X-ray Free-Electron Lasers II: Instrumentation, 87780V (3 May 2013); doi: 10.1117/12.2017360
Show Author Affiliations
Laura Bianco, Deutsches Elektronen-Synchrotron (Germany)
J. Becker, Deutsches Elektronen-Synchrotron (Germany)
R.D. Dinapoli, Paul Scherrer Institut (Switzerland)
E. Fretwurst, Univ. Hamburg (Germany)
P. Goettlicher, Deutsches Elektronen-Synchrotron (Germany)
H. Graafsma, Deutsches Elektronen-Synchrotron (Germany)
Mid Sweden Univ. (Sweden)
D. Greiffenberg, Paul Scherrer Institut (Switzerland)
M. Gronewald, Univ. Bonn (Germany)
B. Henrich, Paul Scherrer Institut (Switzerland)
H. Hirsemann, Deutsches Elektronen-Synchrotron (Germany)
S. Jack, Deutsches Elektronen-Synchrotron (Germany)
R. Klanner, Univ. Hamburg (Germany)
A. Klyuev, Deutsches Elektronen-Synchrotron (Germany)
H. Krueger, Univ. Bonn (Germany)
A. Marras, Deutsches Elektronen-Synchrotron (Germany)
A. Mozzanica, Paul Scherrer Institut (Switzerland)
S. Rah, Deutsches Elektronen-Synchrotron (Germany)
B. Schmitt, Paul Scherrer Institut (Switzerland)
X. Shi, Paul Scherrer Institut (Switzerland)
U. Trunk, Deutsches Elektronen-Synchrotron (Germany)
J. Schwandt, Univ. Hamburg (Germany)
J. Zhang, Univ. Hamburg (Germany)


Published in SPIE Proceedings Vol. 8778:
Advances in X-ray Free-Electron Lasers II: Instrumentation
Thomas Tschentscher; Kai Tiedtke, Editor(s)

© SPIE. Terms of Use
Back to Top