Share Email Print
cover

Proceedings Paper

Investigation on the dielectric behavior of aluminum nitride thin films at different temperatures applying a time-zero approach
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In MEMS (micro electromechanical system) devices, piezoelectric aluminum nitride (AlN) thin films are commonly used as functional material for sensing and actuating purposes. Additionally, AlN features excellent dielectric properties as well as a high chemical and thermal stability, making it also a good choice for passivation purposes for microelectronic devices. With those aspects and current trends towards minimization in mind, the dielectric reliability of thin AlN films is of utmost importance for the realization of advanced device concepts. In this study, we present results on the transversal dielectric strength of 100 nm AlN thin films deposited by dc magnetron sputtering. The dielectric strength was measured using a time-zero approach, where the film is stressed using a fast voltage ramp up to the point of breakdown. The measurements were performed using different contact pad sizes, different voltage ramping speeds and device temperatures, respectively. In order to achieve statistical significance, at least 12 measurements were performed for each environment parameter set and the results analyzed using the Weibull approach. The results show, that the breakdown field in positive direction rises with the pad size, as expected. Furthermore, lower breakdown fields with increasing temperatures up to 300°C are observed with the mean field to failure following an exponential law typical for temperature activated processes. The activation energy was determined to 27 meV, allowing an estimation of the breakdown field towards even higher temperatures. In negative field direction no breakdown occurred, which is attributed to the metal-insulator-semiconductor configuration of the sample and hence, the larger depletion layer forming in the silicon dominates the observed current behavior.

Paper Details

Date Published: 17 May 2013
PDF: 7 pages
Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 87631X (17 May 2013); doi: 10.1117/12.2017066
Show Author Affiliations
Michael Schneider, Vienna Univ. of Technology (Austria)
Achim Bittner, Vienna Univ. of Technology (Austria)
Ulrich Schmid, Vienna Univ. of Technology (Austria)


Published in SPIE Proceedings Vol. 8763:
Smart Sensors, Actuators, and MEMS VI
Ulrich Schmid; José Luis Sánchez de Rojas Aldavero; Monika Leester-Schaedel, Editor(s)

© SPIE. Terms of Use
Back to Top