Share Email Print
cover

Proceedings Paper

Multiple instance hidden Markov models for GPR-based landmine detection
Author(s): Achut Manandhar; Kenneth D. Morton; Leslie M. Collins; Peter A. Torrione
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ground Penetrating Radar (GPR) is a widely used technology for the detection of subsurface buried threats. Although GPR data contains a representation of 3D space, during training, target and false alarm locations are usually only provided in 2D space along the surface of the earth. To overcome uncertainty in target depth location, many algorithms simply extract features from multiple depth regions that are then independently used to make mine/non-mine decisions. A similar technique is employed in hidden Markov models (HMM) based landmine detection. In this approach, sequences of downtrack GPR responses over multiple depth regions are utilized to train an HMM, which learns the probability of a particular sequence of GPR responses being generated by a buried target. However, the uncertainty in object depth complicates learning for discriminating targets/non-targets since features at the (unknown) target depth can be significantly different from features at other depths but in the same volume. To mitigate the negative impact of the uncertainty in object depth, mixture models based on Multiple Instance Learning (MIL) have previously been developed. MIL is also applicable in the landmine detection problem using HMMs because features that are extracted independently from sequences of GPR signals over several depth bins can be viewed as a set of unlabeled time series, where the entire set either corresponds to a buried threat or a false alarm. In this work, a novel framework termed as multiple instance hidden Markov model (MIHMM) is developed. We show that the performance of the proposed approach for discriminating targets from non-targets in GPR data is promising.

Paper Details

Date Published: 7 June 2013
PDF: 12 pages
Proc. SPIE 8709, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, 87091L (7 June 2013); doi: 10.1117/12.2016401
Show Author Affiliations
Achut Manandhar, Duke Univ. (United States)
Kenneth D. Morton, Duke Univ. (United States)
Leslie M. Collins, Duke Univ. (United States)
Peter A. Torrione, Duke Univ. (United States)


Published in SPIE Proceedings Vol. 8709:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII
J. Thomas Broach; Jason C. Isaacs, Editor(s)

© SPIE. Terms of Use
Back to Top