Share Email Print
cover

Proceedings Paper

Wavelength resolved polarized elastic scatter measurements from micron-sized single particles
Author(s): Vasanthi Sivaprakasam; Jozsef Czege; Jay D. Eversole
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The goal of this project is to investigate correlations of polarimetric angular scattering patterns from individual aerosol particles with the particles’ physical structure and composition. Such signature patterns may be able to provide particle classification capability, such as, for example, discrimination between man-made and naturally occurring aerosols. If successful, this effort could improve current detection methods for biological warfare (BW) agent aerosols. So far, we have demonstrated an experimental arrangement to measure polarization-state resolved, multi-angle, scattering intensities from single aerosol particles on-the-fly. Our novel approach is a radical departure from conventional polarimetric measurement methods, and a key factor is the use of a multiple-order retarder to prepare different polarization states, depending on the wavelength of the incident light. This novel experimental technique uses a supercontinuum light source, an array of optical fibers, an imaging spectrometer and an EMCCD camera to simultaneously acquire wavelength and angle dependent particle light scattering data as a two-dimensional snapshot.

Mueller matrix elements were initially measured from individual particles held in an optical trap (at 405 nm). Since particles can be stably trapped for long periods (hours), we were able to change the optical configuration to acquire multiple Mueller matrix element measurements on a single particle. We have computationally modeled these measurements at specific angles, and the comparison with experimental measurements shows good agreement. Similar measurements have also been made on slowly falling particles, and our current efforts are focused on improving experimental technique sufficiently to make such measurements on flowing particles.

Paper Details

Date Published: 29 May 2013
PDF: 6 pages
Proc. SPIE 8710, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV, 871018 (29 May 2013); doi: 10.1117/12.2016398
Show Author Affiliations
Vasanthi Sivaprakasam, U.S. Naval Research Lab. (United States)
Jozsef Czege, U.S. Naval Research Lab. (United States)
Jay D. Eversole, U.S. Naval Research Lab. (United States)


Published in SPIE Proceedings Vol. 8710:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV
Augustus Way Fountain, Editor(s)

© SPIE. Terms of Use
Back to Top