Share Email Print
cover

Proceedings Paper

A comparison of the mean square error performance of speckle and MFBD image reconstruction techniques under anisoplanatic long-horizontal-path imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The potential benefits of real-time, or near-real-time, turbulent image processing hardware for long-range surveillance and weapons targeting are sufficient to motivate significant commitment of both time and money to their development. Thoughtful comparisons between potential candidates are necessary to confidently decide on a preferred processing algorithm. In this paper, we compare the mean-square-error (MSE) performance of speckle imaging methods and a maximum-likelihood, multi-frame blind deconvolution (MFBD) method applied to longpath horizontal imaging scenarios. Both methods are used to reconstruct a scene from simulated imagery featuring anisoplanatic turbulence induced aberrations. This comparison is performed over three sets of 1000 simulated images each for low, moderate and severe turbulence-induced image degradation. The comparison shows that speckle-imaging techniques reduce the MSE 46 percent, 42 percent and 47 percent on average for low, moderate, and severe cases, respectively using 15 input frames under daytime conditions and moderate frame rates. Similarly, the MFBD method provides, 40 percent, 29 percent, and 36 percent improvements in MSE on average under the same conditions. The comparison is repeated under low light conditions (less than 100 photons per pixel) where improvements of 39 percent, 29 percent and 27 percent are available using speckle imaging methods and 25 input frames and 38 percent, 34 percent and 33 percent respectively for the MFBD method and 150 input frames.

Paper Details

Date Published: 31 May 2013
PDF: 22 pages
Proc. SPIE 8713, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications X, 87130M (31 May 2013); doi: 10.1117/12.2016124
Show Author Affiliations
Glen E. Archer, Michigan Technological Univ. (United States)
Jeremy P. Bos, Michigan Technological Univ. (United States)
Michael C. Roggemann, Michigan Technological Univ. (United States)


Published in SPIE Proceedings Vol. 8713:
Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications X
Daniel J. Henry; Davis A. Lange; Dale Linne von Berg; S. Danny Rajan; Thomas J. Walls; Darrell L. Young, Editor(s)

© SPIE. Terms of Use
Back to Top