Share Email Print
cover

Proceedings Paper

Biocompatible hydrogel membranes for the protection of RNA aptamer-based electrochemical sensors
Author(s): Lauren R. Schoukroun-Barnes; Samiullah Wagan; Juan Liu; Jennie B. Leach; Ryan J. White
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Electrochemical-aptamer based (E-AB) sensors represent a universal specific, selective, and sensitive sensing platform for the detection of small molecule targets. Their specific detection abilities are afforded by oligonucleotide (RNA or DNA) aptamers employed as electrode-bound biorecognition elements. Sensor signaling is predicated on bindinginduced changes in conformation and/or flexibility of the aptamer that is readily measurable electrochemically. While sensors fabricated using DNA aptamers can achieve specific and selective detection even in unadulterated sample matrices, such as blood serum, RNA-based sensors fail when challenged in the same sample matrix without significant sample pretreatment. This failure is at least partially a result of enzymatic degradation of the RNA sensing element. This degradation destroys the sensing aptamer inhibiting the quantitative measurement of the target analyte and thus limits the application of E-AB sensors constructed with RNA aptamer. To circumvent this, we demonstrate that a biocompatible hydrogel membrane protects the RNA aptamer sensor surface from enzymatic degradation for at least 3 hours - a remarkable improvement over the rapid (~minutes) degradation of unprotected sensors. To demonstrate this, we characterize the response of sensors fabricated with representative DNA and RNA aptamers directed against the aminoglycoside antibiotic, tobramycin in blood serum both protected and unprotected by a polyacrylamide membrane. Furthermore, we find encapsulation of the sensor surface with the hydrogel does not significantly impede the detection ability of aptamer-based sensors. This hydrogel-aptamer interface will thus likely prove useful for the long-term monitoring of therapeutics in complex biological media.

Paper Details

Date Published: 31 May 2013
PDF: 8 pages
Proc. SPIE 8719, Smart Biomedical and Physiological Sensor Technology X, 87190I (31 May 2013); doi: 10.1117/12.2016020
Show Author Affiliations
Lauren R. Schoukroun-Barnes, Univ. of Maryland, Baltimore County (United States)
Samiullah Wagan, Univ. of Maryland, Baltimore County (United States)
Juan Liu, Univ. of Maryland, Baltimore County (United States)
Jennie B. Leach, Univ. of Maryland, Baltimore County (United States)
Ryan J. White, Univ. of Maryland, Baltimore County (United States)


Published in SPIE Proceedings Vol. 8719:
Smart Biomedical and Physiological Sensor Technology X
Brian M. Cullum; Eric S. McLamore, Editor(s)

© SPIE. Terms of Use
Back to Top