Share Email Print

Proceedings Paper

Effect of surface structuring onto the efficiency of the in- and out-coupling of light from a chip in Lab-on-a-chip approaches with optical detection
Author(s): Ines Frese; Rainer Gransee
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical detection methods have been implemented on micro-fluidic chips containing channels or cavities of different geometries e.g. for colorimetry or fluorescence measurements with excitation within the chip plane [1-2]. The most prominent problem of the read-out from a micro-fluidic chip is the limitation of the optical yield. Without e.g. an immersion liquid for compensation of the total reflection on the boundary, only about 11-13% of rays cross over the boundary from a polymer chip to air. One efficient method to increase the optical yield from a chip is a ray reorientation inside of the chip using an additional surface structure creating new incident refraction conditions on the boundary before rays are leaving the chip. The use of 45°-tilted mirror arrangements for in- and out-coupling of the fluorescence signal from a micro-fluidic chip and the realization of this principle for low-cost fluorescence detection systems have been published [3].

This paper includes the investigation of the effect of different tilt angles of total reflection and metallized-surface mirrors for an analyte volume emitter, using the ray-tracing simulation tool OptiCAD10. Furthermore, an estimation of the influence of a surface-emitted signal for different geometries of metallized detection cells with or without a combination with external lenses on the out-coupling efficiency will be presented. The best result of an out-coupling efficiency increase of 10 times was achieved for a combination of a structured and metallized detection cell with an external cylindrical lens.

Paper Details

Date Published: 31 May 2013
PDF: 11 pages
Proc. SPIE 8719, Smart Biomedical and Physiological Sensor Technology X, 87190D (31 May 2013); doi: 10.1117/12.2015671
Show Author Affiliations
Ines Frese, Institut für Mikrotechnik Mainz GmbH (Germany)
Rainer Gransee, Institut für Mikrotechnik Mainz GmbH (Germany)

Published in SPIE Proceedings Vol. 8719:
Smart Biomedical and Physiological Sensor Technology X
Brian M. Cullum; Eric S. McLamore, Editor(s)

© SPIE. Terms of Use
Back to Top