Share Email Print

Proceedings Paper

Intrusion detection on oil pipeline right of way using monogenic signal representation
Author(s): Binu M. Nair; Varun Santhaseelan; Chen Cui; Vijayan K. Asari
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present an object detection algorithm to automatically detect and identify possible intrusions such as construction vehicles and equipment on the regions designated as the pipeline right-of-way (ROW) from high resolution aerial imagery. The pipeline industry has buried millions of miles of oil pipelines throughout the country and these regions are under constant threat of unauthorized construction activities. We propose a multi-stage framework which uses a pyramidal template matching scheme in the local phase domain by taking a single high resolution training image to classify a construction vehicle. The proposed detection algorithm makes use of the monogenic signal representation to extract the local phase information. Computing the monogenic signal from a two dimensional object region enables us to separate out the local phase information (structural details) from the local energy (contrast) thereby achieving illumination invariance. The first stage involves the local phase based template matching using only a single high resolution training image in a local region at multiple scales. Then, using the local phase histogram matching, the orientation of the detected region is determined and a voting scheme gives a certain weightage to the resulting clusters. The final stage involves the selection of clusters based on the number of votes attained and using the histogram of oriented phase feature descriptor, the object is located at the correct orientation and scale. The algorithm is successfully tested on four different datasets containing imagery with varying image resolution and object orientation.

Paper Details

Date Published: 23 May 2013
PDF: 14 pages
Proc. SPIE 8745, Signal Processing, Sensor Fusion, and Target Recognition XXII, 87451U (23 May 2013); doi: 10.1117/12.2015640
Show Author Affiliations
Binu M. Nair, Univ. of Dayton (United States)
Varun Santhaseelan, Univ. of Dayton (United States)
Chen Cui, Univ. of Dayton (United States)
Vijayan K. Asari, Univ. of Dayton (United States)

Published in SPIE Proceedings Vol. 8745:
Signal Processing, Sensor Fusion, and Target Recognition XXII
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top