Share Email Print
cover

Proceedings Paper

Terahertz atmospheric attenuation and continuum effects
Author(s): David M. Slocum; Thomas M. Goyette; Elizabeth J. Slingerland; Robert H. Giles; William E. Nixon
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Remote sensing over long path lengths has become of greater interest in the terahertz frequency region. Applications such as pollution monitoring and detection of energetic chemicals are of particular interest. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum is lacking. The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The continuum effect gives rise to an excess absorption that is unaccounted for in just a resonant line spectrum simulation. The transmission of broadband terahertz radiation from 0.300THz - 1.5THz through air with varying relative humidity levels was recorded for multiple path lengths. From these data, the absorption coefficient as a function of frequency was determined and compared with model calculations. The intensity and location of the strong absorption lines were in good agreement with spectral databases such as the 2008 HITRAN database and the JPL database. However, a noticeable continuum effect was observed particularly in the atmospheric transmission windows. A small discrepancy still remained even after accounting for continuum absorption using the best available data from the literature. This discrepancy, when projected over a one kilometer path length, typical of distances used in remote sensing, can cause a 30dB difference between calculated and observed attenuation. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

Paper Details

Date Published: 31 May 2013
PDF: 14 pages
Proc. SPIE 8716, Terahertz Physics, Devices, and Systems VII: Advanced Applications in Industry and Defense, 871607 (31 May 2013); doi: 10.1117/12.2015471
Show Author Affiliations
David M. Slocum, Univ. of Massachusetts Lowell (United States)
Thomas M. Goyette, Univ. of Massachusetts Lowell (United States)
Elizabeth J. Slingerland, Univ. of Massachusetts Lowell (United States)
Robert H. Giles, Univ. of Massachusetts Lowell (United States)
William E. Nixon, U.S. Army National Ground Intelligence Ctr. (United States)


Published in SPIE Proceedings Vol. 8716:
Terahertz Physics, Devices, and Systems VII: Advanced Applications in Industry and Defense
Mehdi F. Anwar; Thomas W. Crowe; Tariq Manzur, Editor(s)

© SPIE. Terms of Use
Back to Top