Share Email Print

Proceedings Paper

Urban multitarget tracking via gas-kinetic dynamics models
Author(s): Ronald Mahler
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Multitarget tracking in urban environments presents a major theoretical and practical challenge. A recently suggested approach is that of modeling traffic dynamics using the fluid-kinetic methods of traffic-flow theory (TFT). I propose use of the newer, more general, gas-kinetic (GK) approach to TFT. In GK, traffic flow is modeled as a one- or two-dimensional constrained gas. The paper demonstrates the following. (1) The foundational concept in GK--the "phase-space density"--is the same thing as the probability hypothesis density (PHD) of multitarget tracking theory. (2) The theoretically best-that-one-can do approach to TFT-based tracking is a PHD filter. (3) Better performance can be obtained by augmenting this PHD filter as a cardinalized PHD (CPHD) filter. A simple example is presented to illustrate how PHD/CPHD filters can be integrated with conventional macroscopic, mesoscopic, and microscopic TFT.

Paper Details

Date Published: 23 May 2013
PDF: 12 pages
Proc. SPIE 8745, Signal Processing, Sensor Fusion, and Target Recognition XXII, 87450B (23 May 2013); doi: 10.1117/12.2015448
Show Author Affiliations
Ronald Mahler, Lockheed Martin Corp. (United States)

Published in SPIE Proceedings Vol. 8745:
Signal Processing, Sensor Fusion, and Target Recognition XXII
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top