Share Email Print

Proceedings Paper

Capacitive micromachined ultrasonic resonator for ultra sensitive trace gas detection
Author(s): Li-Feng Ge
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The ultra-sensitive trace gas detection has become increasingly important due to the demand for environment and sci-tech progress. In recent years a capacitive micromachined ultrasonic transducer (CMUT) with circular diaphragms used for imaging has been successfully used to detect chemical gases, and shows promising results. However, its behavior is the same as that of CMUTs for ranging, imaging and therapy applications, where the acoustic radiation with a certain power, produced by the vibration of circular diaphragms operating at the first bending mode, is required but is undesirable for gas sensing since it disturbs inevitably the environment to be measured. This paper, therefore, presents to optimize its behavior after an ideal capacitive micromachined ultrasonic resonator (CMUR) and then to utilize second-order and high-order bending modes of the circular diaphragm to minimize its acoustic radiation and obtain higher resonance frequency also. Since the resonance frequencies of high-order modes much higher than the fundamental frequency, an ultra-high operating frequency of GHz can be reached so that raising greatly the sensitivity of the CMUR and being able to realize the ultra-sensitive trace gas detections.

Paper Details

Date Published: 31 January 2013
PDF: 7 pages
Proc. SPIE 8759, Eighth International Symposium on Precision Engineering Measurement and Instrumentation, 87592Y (31 January 2013); doi: 10.1117/12.2015043
Show Author Affiliations
Li-Feng Ge, Anhui Univ. (China)

Published in SPIE Proceedings Vol. 8759:
Eighth International Symposium on Precision Engineering Measurement and Instrumentation
Jie Lin, Editor(s)

© SPIE. Terms of Use
Back to Top