Share Email Print

Proceedings Paper

Vibration damping of a cantilever beam utilizing fluidic flexible matrix composites
Author(s): Bin Zhu; Christopher D. Rahn; Charles E. Bakis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a novel approach for damping the vibration of a cantilever beam by bonding a fluidic flexible matrix composite (F2MC) tube to the beam and using the strain induced fluid pumping. The transverse beam vibration couples with the F2MC tube strain to generate flow into an external accumulator through an orifice that dissipates energy. The energy dissipation is especially significant at the resonances of the cantilever beam, where the beam vibrates with greatest amplitude and induces the most fluid flow from the F2MC tube. As a result, the resonant peaks can be greatly reduced due to the damping introduced by the flow through the orifice. An analytical model is developed based on Euler-Bernoulli beam theory and Lekhnitskii’s solution for anisotropic layered tubes. In order to maximize the vibration reduction, a parametric study of the F2MC tube is performed. The analysis results show that the resonant peaks can be provided with a damping ratio of up to 13.2% by tailoring the fiber angle of the F2MC tube, the bonding locations of the tube, and the orifice flow coefficient.

Paper Details

Date Published: 10 April 2013
PDF: 12 pages
Proc. SPIE 8688, Active and Passive Smart Structures and Integrated Systems 2013, 86880T (10 April 2013); doi: 10.1117/12.2014763
Show Author Affiliations
Bin Zhu, The Pennsylvania State Univ. (United States)
Christopher D. Rahn, The Pennsylvania State Univ. (United States)
Charles E. Bakis, The Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 8688:
Active and Passive Smart Structures and Integrated Systems 2013
Henry Sodano, Editor(s)

© SPIE. Terms of Use
Back to Top