Share Email Print

Proceedings Paper

3D AFM method for characterization of resist effect of aerial image contrast on side wall roughness
Author(s): Yong-ha Lee; Sang-Joon Cho; Sang-il Park; R. Ayothi; Y. Hishiro
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We characterized the roughness and side wall morphology of lithographically produced nanostructures of resistmultilayer materials using the recently developed three-dimensional atomic force microscopy (3D-AFM), which has an independent Z scanner intentionally tilted to a certain angle access the sidewall. In order to produce different degrees of Line Edge Roughness (LER) in a given photoresist sample, we systematically varied the Aerial Image Contrast (AIC) at a constant dose for optically imaged resists. We describe herein the effects of AIC on KrF resists that were observed by using 3D-AFM and Critical Dimension-Scanning Electron Microscopy (CD-SEM). High-resolution sidewall images and line profiles obtained by the 3D-AFM technique demonstrate its advantages to characterize the shape and roughness of device patterns throughout the development and pattern transfer process. Taken together, we demonstrate that AFM imaging can identify a trend in Sidewall Roughness (SWR) as a function of AIC effects on photoresist sample, and CDSEM imaging provided supporting evidence to establish the LER trend.

Paper Details

Date Published: 10 April 2013
PDF: 6 pages
Proc. SPIE 8681, Metrology, Inspection, and Process Control for Microlithography XXVII, 86812Y (10 April 2013); doi: 10.1117/12.2013657
Show Author Affiliations
Yong-ha Lee, Park Systems Corp. (United States)
Sang-Joon Cho, Park Systems Corp. (United States)
Sang-il Park, Park Systems Corp. (United States)
R. Ayothi, JSR Micro, Inc. (United States)
Y. Hishiro, JSR Micro, Inc (United States)

Published in SPIE Proceedings Vol. 8681:
Metrology, Inspection, and Process Control for Microlithography XXVII
Alexander Starikov; Jason P. Cain, Editor(s)

© SPIE. Terms of Use
Back to Top