Share Email Print
cover

Proceedings Paper

Large-scale numerical simulation of laser propulsion by parallel computing
Author(s): Yaoyuan Zeng; Wentao Zhao; Zhenghua Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

As one of the most significant methods to study laser propelled rocket, the numerical simulation of laser propulsion has drawn an ever increasing attention at present. Nevertheless, the traditional serial simulation model cannot satisfy the practical needs because of insatiable memory overhead and considerable computation time. In order to solve this problem, we study on a general algorithm for laser propulsion design, and bring about parallelization by using a twolevel hybrid parallel programming model. The total computing domain is decomposed into distributed data spaces, and each partition is assigned to a MPI process. A single step of computation operates in the inter loop level, where a compiler directive is used to split MPI process into several OpenMP threads. Finally, parallel efficiency of hybrid program about two typical configurations on a China-made supercomputer with 4 to 256 cores is compared with pure MPI program. And, the hybrid program exhibits better performance than the pure MPI program on the whole, roughly as expected. The result indicates that our hybrid parallel approach is effective and practical in large-scale numerical simulation of laser propulsion.

Paper Details

Date Published: 16 May 2013
PDF: 8 pages
Proc. SPIE 8796, 2nd International Symposium on Laser Interaction with Matter (LIMIS 2012), 87960N (16 May 2013); doi: 10.1117/12.2011249
Show Author Affiliations
Yaoyuan Zeng, National Univ. of Defense Technology (China)
Wentao Zhao, Academy of Equipment (China)
Zhenghua Wang, National Univ. of Defense Technology (China)


Published in SPIE Proceedings Vol. 8796:
2nd International Symposium on Laser Interaction with Matter (LIMIS 2012)
Stefan Kaierle; Jingru Liu; Jianlin Cao, Editor(s)

© SPIE. Terms of Use
Back to Top