Share Email Print

Proceedings Paper

A hybrid algorithm with GA and DAEM
Author(s): HongJie Wan; HaoJiang Deng; XueWei Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Although the expectation-maximization (EM) algorithm has been widely used for finding maximum likelihood estimation of parameters in probabilistic models, it has the problem of trapping by local maxima. To overcome this problem, the deterministic annealing EM (DAEM) algorithm was once proposed and had achieved better performance than EM algorithm, but it is not very effective at avoiding local maxima. In this paper, a solution is proposed by integrating GA and DAEM into one procedure to further improve the solution quality. The population based search of genetic algorithm will produce different solutions and thus can increase the search space of DAEM. Therefore, the proposed algorithm will reach better solution than just using DAEM. The algorithm retains the property of DAEM and gets the better solution by genetic operation. Experiment results on Gaussian mixture model parameter estimation demonstrate that the proposed algorithm can achieve better performance.

Paper Details

Date Published: 14 March 2013
PDF: 5 pages
Proc. SPIE 8768, International Conference on Graphic and Image Processing (ICGIP 2012), 87683D (14 March 2013); doi: 10.1117/12.2011056
Show Author Affiliations
HongJie Wan, Beijing Univ. of Chemical Technology (China)
HaoJiang Deng, Institute of Acoustics (China)
XueWei Wang, Institute of Acoustics (China)

Published in SPIE Proceedings Vol. 8768:
International Conference on Graphic and Image Processing (ICGIP 2012)
Zeng Zhu, Editor(s)

© SPIE. Terms of Use
Back to Top