Share Email Print

Proceedings Paper

Numerical study on thermal load of laser reflecting focusing system
Author(s): Fu Qiang Cheng; Yan Ji Hong
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In laser thrusters, the reflectors of the focusing system work under high-intensity laser radiation. The material choice of the reflectors is quite important due to thermal load raised by laser absorption. Meanwhile the endurance of heavy thermal load should be attributed to the metallic reflectors with low laser energy absorption ratio. Based on two-dimension heat conduction equation and several approximations, this study investigates the melting time and thermal deformation characteristics for three kind of metallic materials that are of high heat specific heat, high conductivity and high melting point, and so are some alloys. Calculated through Finite Differential Method, the results show that, as for the twice reflecting focusing system, the thermal load is quite remarkable for the both reflectors and is more serious for the second one, while different materials present distinct thermal endurance performance. For the materials under study, the beryllium mirrors featuring higher specific heat could endure longer laser radiation and may prolong the work time. Moreover, if the reflecting mirror is required to work under high laser radiation for longer time, the aid of cooling system maybe indispensable.

Paper Details

Date Published: 16 May 2013
PDF: 7 pages
Proc. SPIE 8796, 2nd International Symposium on Laser Interaction with Matter (LIMIS 2012), 87960B (16 May 2013); doi: 10.1117/12.2010886
Show Author Affiliations
Fu Qiang Cheng, Academy of Equipment (China)
Yan Ji Hong, Academy of Equipment (China)

Published in SPIE Proceedings Vol. 8796:
2nd International Symposium on Laser Interaction with Matter (LIMIS 2012)
Stefan Kaierle; Jingru Liu; Jianlin Cao, Editor(s)

© SPIE. Terms of Use
Back to Top