Share Email Print
cover

Proceedings Paper

3D resist profile full chip verification and hot spot disposition
Author(s): Qing Yang; ShyueFong Quek; YeeMei Foong; Jens Hassmann; DongQing Zhang; Andre Leschok; Tang Yun; Mu Feng; Stanislas Baron; JianHong Qiu; Taksh Pandey; Bo Yan; Russell Dover
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

For 28 nm technology node and below resist profiles need to be taken in to consideration during optical proximity correction (OPC) and verification. The low k1 results in a shallower depth of focus and thus thinner resists, which combined with the process limits increases the risk of resist degradation. Only considering the resist critical dimensions at a single focal plane (such as at the bottom of the resist stack) will miss the impact of the resist 3D profile, like top loss or bottom footing, which can transfer to etch hard pattern failures. To date, modeling to study resist 3D profiles has been available using rigorous simulators and has been used as a verification method for hot spots captured during full chip OPC verification, but not for full chip verification due to the high computational run time cost. This paper demonstrates a 3D resist compact OPC model concept and implementation in a full chip OPC and verification flow. The results show significant improvement for full chip OPC quality with a good correlation between simulation and real wafer hot spots. Because resist profiles are not directly correlated to etch failure, the relationship between the resist profile and etch failures and how to characterize the threshold to dispose the hot spots for the 3D compact model was also investigated.

Paper Details

Date Published: 12 April 2013
PDF
Proc. SPIE 8683, Optical Microlithography XXVI, 86831N (12 April 2013); doi: 10.1117/12.2010595
Show Author Affiliations
Qing Yang, GLOBALFOUNDRIES Inc. (Singapore)
ShyueFong Quek, GLOBALFOUNDRIES Inc. (Singapore)
YeeMei Foong, GLOBALFOUNDRIES Inc. (Singapore)
Jens Hassmann, GLOBALFOUNDRIES Inc. (Germany)
DongQing Zhang, GLOBALFOUNDRIES Inc. (Singapore)
Andre Leschok, GLOBALFOUNDRIES Inc. (Germany)
Tang Yun, GLOBALFOUNDRIES Inc. (Singapore)
Mu Feng, ASML Brion Technologies (United States)
Stanislas Baron, ASML Brion Technologies (United States)
JianHong Qiu, ASML Brion Technologies (United States)
Taksh Pandey, ASML Brion Technologies (United States)
Bo Yan, ASML Brion Technologies (United States)
Russell Dover, ASML Brion Technologies (United States)


Published in SPIE Proceedings Vol. 8683:
Optical Microlithography XXVI
Will Conley, Editor(s)

© SPIE. Terms of Use
Back to Top