Share Email Print

Proceedings Paper

The community seismic network and quake-catcher network: enabling structural health monitoring through instrumentation by community participants
Author(s): Monica D. Kohler; Thomas H. Heaton; Ming-Hei Cheng
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A new type of seismic network is in development that takes advantage of community volunteers to install low-cost accelerometers in houses and buildings. The Community Seismic Network and Quake-Catcher Network are examples of this, in which observational-based structural monitoring is carried out using records from one to tens of stations in a single building. We have deployed about one hundred accelerometers in a number of buildings ranging between five and 23 stories in the Los Angeles region. In addition to a USB-connected device which connects to the host’s computer, we have developed a stand-alone sensor-plug-computer device that directly connects to the internet via Ethernet or wifi. In the case of the Community Seismic Network, the sensors report both continuous data and anomalies in local acceleration to a cloud computing service consisting of data centers geographically distributed across the continent. Visualization models of the instrumented buildings’ dynamic linear response have been constructed using Google SketchUp and an associated plug-in to matlab with recorded shaking data. When data are available from only one to a very limited number of accelerometers in high rises, the buildings are represented as simple shear beam or prismatic Timoshenko beam models with soil-structure interaction. Small-magnitude earthquake records are used to identify the first set of horizontal vibrational frequencies. These frequencies are then used to compute the response on every floor of the building, constrained by the observed data. These tools are resulting in networking standards that will enable data sharing among entire communities, facility managers, and emergency response groups.

Paper Details

Date Published: 19 April 2013
PDF: 8 pages
Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013, 86923X (19 April 2013); doi: 10.1117/12.2010306
Show Author Affiliations
Monica D. Kohler, California Institute of Technology (United States)
Thomas H. Heaton, California Institute of Technology (United States)
Ming-Hei Cheng, California Institute of Technology (United States)

Published in SPIE Proceedings Vol. 8692:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
Jerome Peter Lynch; Chung-Bang Yun; Kon-Well Wang, Editor(s)

© SPIE. Terms of Use
Back to Top