Share Email Print
cover

Proceedings Paper

Strain measurements on scattered, highly oriented CNTs
Author(s): Sebastian Geier; Thorsten Mahrholz; Johannes Riemenschneider; Peter Wierach; Michael Sinapius
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Since carbon nanotubes (CNTs) have been discovered in 1991, worldwide scientific research reveals excellent properties. Most of the found properties refer to almost defect-free, single-walled carbon nanotubes (SWCNTs) with nano-scale dimensions. However, scientists try to incorporate CNTs into applications to transfer their features in order to push the specific performance. Typically the results are comparably lower than expected because of the varying quality of used CNTs. This paper presents results of research using CNTs as actuators. In contrast to published paper which analyzed architectures of entangled CNTs as active components, like papers or yarns, to measure their bulk-strain this paper focuses on scattered, highly aligned CNTs. This approach promises to clarify the effect of actuation, whether it is a quantum-mechanically, or rather an combined electrostatic volume-transfer effect. Two experimental set-ups are presented. The first experiment is carried out using highly aligned multi-walled CNTs (MWCNT-arrays). Their orientation is investigated intensively in comparison to other analyzed CNT-arrays. Furthermore their substrate consists of electrical conductive carbon. The CNT-array is optically analyzed along the longitudinal geometry of the vertically aligned MWCNTs. The interfaces of the set-up, which may influence the measurement, have been analyzed in order to avoid second-order effects like thermal swelling or chemical degradation. The results reveal comparable high deflections starting at an activation-voltage of ±1.75V. The ionic liquid is tested within a voltage-range of ±2V due to time-staple performance. The second presented results are found by using Raman-spectroscopy to analyze single SWCNTs. This paper presents the first results of the challenging test campaign to analyze single-walled nanotubes within an electrolyte during charging. A shifting of Raman-peaks according to the wavenumber can be directly attributed to a geometry-change. Thus, the two presented experiments uses aligned CNTs a driving actuation mechanism of single CNTs may be identified.

Paper Details

Date Published: 9 April 2013
PDF: 12 pages
Proc. SPIE 8691, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2013, 869110 (9 April 2013); doi: 10.1117/12.2009855
Show Author Affiliations
Sebastian Geier, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Thorsten Mahrholz, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Johannes Riemenschneider, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Peter Wierach, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Michael Sinapius, Technical Univ. of Braunschweig (Germany)


Published in SPIE Proceedings Vol. 8691:
Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2013
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top