Share Email Print
cover

Proceedings Paper

Toward efficient aeroelastic energy harvesting: device performance comparisons and improvements through synchronized switching
Author(s): Matthew Bryant; Alexander D. Schlichting; Ephrahim Garcia
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents experimental energy harvesting efficiency analysis of a piezoelectric device driven to limit cycle oscillations by an aeroelastic flutter instability. Wind tunnel testing of the flutter energy harvester was used to measure the power extracted through a matched resistive load as well as the variation in the device swept area over a range of wind speeds. The efficiency of this energy harvester was shown to be maximized at a wind speed of about 2.4 m/s, which corresponds to a limit cycle oscillation (LCO) frequency that matches the first natural frequency of the piezoelectric structure. At this wind speed, the overall system efficiency was 2.6%, which exceeds the peak efficiency of other comparably sized oscillator-based wind energy harvesters using either piezoelectric or electromagnetic transduction. Active synchronized switching techniques are proposed as a method to further increase the overall efficiency of this device by both boosting the electrical output and also reducing the swept area by introducing additional electrical energy dissipation. Real-time peak detection and switch control is the major technical challenge to implementing such active power electronics schemes in a practical system where the wind speed and the corresponding LCO frequency are not generally known or constant. A promising microcontroller (MCU) based peak detector is implemented and tested over a range of operating wind speeds.

Paper Details

Date Published: 10 April 2013
PDF: 10 pages
Proc. SPIE 8688, Active and Passive Smart Structures and Integrated Systems 2013, 868807 (10 April 2013); doi: 10.1117/12.2009818
Show Author Affiliations
Matthew Bryant, Cornell Univ. (United States)
Alexander D. Schlichting, Cornell Univ. (United States)
Ephrahim Garcia, Cornell Univ. (United States)


Published in SPIE Proceedings Vol. 8688:
Active and Passive Smart Structures and Integrated Systems 2013
Henry Sodano, Editor(s)

© SPIE. Terms of Use
Back to Top