Share Email Print
cover

Proceedings Paper

Damage detection and characterization using fiber optic sensors
Author(s): Branko Glisic; Dorotea Sigurdardottir; Yao Yao; David Hubbell
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Fiber optic sensors (FOS) have significantly evolved and have reached their market maturity during the last decade. Their widely recognized advantages are high precision, long-term stability, and durability. But in addition to these advantageous performances, FOS technologies allow for affordable instrumentation of large areas of structure enabling global large-scale monitoring based on long-gauge sensors and integrity monitoring based on distributed sensors. These two approaches are particularly suitable for damage detection and characterization, i.e., damage localization and to certain extent quantification and propagation, as illustrated by two applications presented in detail in this paper: post-tensioned concrete bridge and segmented concrete pipeline. Early age cracking was detected, localized and quantified in the concrete deck of a pedestrian bridge using embedded long-gauge FOS. Post-tensioning of deck closed the cracks; however, permanent weakening in a bridge joint occurred due to cracking and it was identified and quantified. The damage was confirmed using embedded distributed FOS and a separate load test of the bridge. Real-size concrete pipeline specimens and surrounding soil were equipped with distributed FOS and exposed to permanent ground displacement in a large-scale testing facility. Two tests were performed on different pipeline specimens. The sensors bonded on the pipeline specimens successfully detected and localized rupture of pipeline joints, while the sensors embedded in the soil were able to detect and localize the failure plane. Comparison with strain-gauges installed on the pipeline and visual inspection after the test confirmed accurate damage detection and characterization.

Paper Details

Date Published: 19 April 2013
PDF: 10 pages
Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013, 86921Y (19 April 2013); doi: 10.1117/12.2009817
Show Author Affiliations
Branko Glisic, Princeton Univ. (United States)
Dorotea Sigurdardottir, Princeton Univ. (United States)
Yao Yao, Princeton Univ. (United States)
David Hubbell, The Univ. of Toronto (Canada)


Published in SPIE Proceedings Vol. 8692:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
Jerome Peter Lynch; Chung-Bang Yun; Kon-Well Wang, Editor(s)

© SPIE. Terms of Use
Back to Top