Share Email Print
cover

Proceedings Paper

Viscoelastic model of IPMC actuators
Author(s): V. Vunder; A. Punning; A. Aabloo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

One of the constraining properties of the IPMC actuators is their back-relaxation. An excited IPMC actuator, instead of holding its bent state, relaxes back towards its initial shape even when the exciting signal is a DC voltage. This behavior is reported by many authors and is usually explained with diffusion of water back, or out of the electrodes. However, a non-traditional approach to the well-known elements of the traditional viscoelastic schemes – spring and damper – results with a qualitatively new model of viscoelasticity. This mechanical analogy of viscoelastic behavior elucidates the naturalness of the back-relaxation behavior of the actuators. The model is described by a system of PDEs and gives an intuitive and accurate charge-deflection correlation with back-relaxation included. The experiments carried out with actuators of different shapes show excellent accordance with the model.

Paper Details

Date Published: 9 April 2013
PDF: 8 pages
Proc. SPIE 8687, Electroactive Polymer Actuators and Devices (EAPAD) 2013, 868723 (9 April 2013); doi: 10.1117/12.2009623
Show Author Affiliations
V. Vunder, Institute of Technology (Estonia)
A. Punning, Institute of Technology (Estonia)
A. Aabloo, Institute of Technology (Estonia)


Published in SPIE Proceedings Vol. 8687:
Electroactive Polymer Actuators and Devices (EAPAD) 2013
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top