Share Email Print
cover

Proceedings Paper

Uncooled MWIR SiC optical detector response dynamics and digital imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Crystalline silicon carbide (SiC) is a wide bandgap covalent semiconductor material with excellent thermo-mechanical and optical properties. While the covalent bonding between the Si and C atoms allows n-type or p-type doping by incorporating dopant atoms into both the Si and C sites, the wide bandgap enables fabrication of optical detectors over a wide range of wavelengths. To fabricate a mid-wave infrared (MWIR) detector, an n-type 4H-SiC substrate is doped with Ga using a laser doping technique. The Ga atoms produce an acceptor level of 0.30 eV which corresponds to the MWIR wavelength of 4.21 μm. Photons of this wavelength excite electrons from the valence band to the acceptor level, thereby modifying the electron density, refractive index, and reflectance of the substrate. This change in reflectance constitutes the detector response. The dynamics of the detector response are studied by placing a chopper at a constant angular velocity between the MWIR radiation source and the detector. The imaging capability of the detector is established by reflecting incoherent light at a wavelength of 633 nm, which is produced by projecting illumination from a light-emitting diode (LED) off the detector towards a CMOS camera and examining the digital output of the camera to determine the relative intensity of the incident radiation. In addition, a mathematical model is presented to analyze the dynamic response and determine the electron density and lifetime in the acceptor level.

Paper Details

Date Published: 19 October 2012
PDF: 9 pages
Proc. SPIE 8540, Unmanned/Unattended Sensors and Sensor Networks IX, 854007 (19 October 2012); doi: 10.1117/12.2009521
Show Author Affiliations
John Zeller, Naval Undersea Warfare Ctr. (United States)
Tariq Manzur, Naval Undersea Warfare Ctr. (United States)
Aravinda Kar, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 8540:
Unmanned/Unattended Sensors and Sensor Networks IX
Edward M. Carapezza; Henry J. White, Editor(s)

© SPIE. Terms of Use
Back to Top