Share Email Print
cover

Proceedings Paper

Ultra high energy density and fast discharge nanocomposite capacitors
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

Paper Details

Date Published: 3 April 2013
PDF: 8 pages
Proc. SPIE 8689, Behavior and Mechanics of Multifunctional Materials and Composites 2013, 868902 (3 April 2013); doi: 10.1117/12.2009361
Show Author Affiliations
Haixiong Tang, Univ. of Florida (United States)
Henry A. Sodano, Univ. of Florida (United States)


Published in SPIE Proceedings Vol. 8689:
Behavior and Mechanics of Multifunctional Materials and Composites 2013
Nakhiah C. Goulbourne; Hani E. Naguib, Editor(s)

© SPIE. Terms of Use
Back to Top