Share Email Print
cover

Proceedings Paper

Non-contact ultrasonic guided wave inspection of rails
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail integrity evaluation. A prototype using an ultrasonic air-coupled guided wave signal generation and air-coupled signal detection in pair with a real-time statistical analysis algorithm has been realized. This solution presents an improvement over the previously considered laser/air-coupled hybrid system because it replaces the costly and hard-to-maintain laser with a much cheaper, faster, and easier-to-maintain air-coupled transmitter. This system requires a specialized filtering approach due to the inherently poor signal-to-noise ratio of the air-coupled ultrasonic measurements in rail steel. Various aspects of the prototype have been designed with the aid of numerical analyses. In particular, simulations of ultrasonic guided wave propagation in rails have been performed using a LISA algorithm. Many of the system operating parameters were selected based on Receiver Operating Characteristic (ROC) curves, which provide a quantitative manner to evaluate different detection performances based on the trade-off between detection rate and false positive rate. Experimental tests have been carried out at the UCSD Rail Defect Farm. The laboratory results indicate that the prototype is able to detect internal rail defects with a high reliability. A field test will be planned later in the year to further validate these results. Extensions of the system are planned to add rail surface characterization to the internal rail defect detection.

Paper Details

Date Published: 19 April 2013
PDF: 12 pages
Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013, 86921L (19 April 2013); doi: 10.1117/12.2009179
Show Author Affiliations
Stefano Mariani, The Univ. of California, San Diego (United States)
Thompson V. Nguyen, The Univ. of California, San Diego (United States)
Robert Ronald Phillips, The Univ. of California, San Diego (United States)
Piotr Kijanka, AGH Univ. of Science and Technology (Poland)
Francesco Lanza di Scalea, The Univ. of California, San Diego (United States)
Wieslaw Jerzy Staszewski, AGH Univ. of Science and Technology (Poland)


Published in SPIE Proceedings Vol. 8692:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
Jerome Peter Lynch; Chung-Bang Yun; Kon-Well Wang, Editor(s)

© SPIE. Terms of Use
Back to Top