Share Email Print
cover

Proceedings Paper

Photothermal imaging
Author(s): Dmitry Lapotko; Elena Antonishina
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An automated image analysis system with two imaging regimes is described. Photothermal (PT) effect is used for imaging of a temperature field or absorption structure of the sample (the cell) with high sensitivity and spatial resolution. In a cell study PT-technique enables imaging of live non-stained cells, and the monitoring of the cell shape/structure. The system includes a dual laser illumination unit coupled to a conventional optical microscope. A sample chamber provides automated or manual loading of up to 3 samples and cell positioning. For image detection a 256 X 256 10-bit CCD-camera is used. The lasers, scanning stage, and camera are controlled by PC. The system provides optical (transmitted light) image, probe laser optical image, and PT-image acquisition. Operation rate is 1 - 1.5 sec per cell for a cycle: cell positioning -- 3 images acquisition -- image parameters calculation. A special database provides image/parameters storage, presentation, and cell diagnostic according to quantitative image parameters. The described system has been tested during live and stained blood cell studies. PT-images of the cells have been used for cell differentiation. In experiments with the red blood cells (RBC) that originate from normal and anaemia blood parameters for disease differentiation have been found. For white blood cells in PT-images the details of cell structure have found that absent in their optical images.

Paper Details

Date Published: 1 February 1995
PDF: 9 pages
Proc. SPIE 2329, Optical and Imaging Techniques in Biomedicine, (1 February 1995); doi: 10.1117/12.200892
Show Author Affiliations
Dmitry Lapotko, Lykov Heat and Mass Transfer Institute (Belarus)
Elena Antonishina, Lykov Heat and Mass Transfer Institute (Belarus)


Published in SPIE Proceedings Vol. 2329:
Optical and Imaging Techniques in Biomedicine
Hans-Jochen Foth; Aaron Lewis; Halina Podbielska; Michel Robert-Nicoud; Herbert Schneckenburger; Anthony J. Wilson, Editor(s)

© SPIE. Terms of Use
Back to Top