Share Email Print

Proceedings Paper

A GPU-based real-time spatial coherence imaging system
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advanced ultrasonic beamforming techniques are often computationally intensive and difficult to implement in real-time. GPU computing has become a vital tool for software beamforming because of its massive parallel computing capabilities. However, GPU-based software beamforming has not yet been integrated into a real-time imaging system. We have recently introduced short-lag spatial coherence (SLSC) imaging as a coherence-based beamforming technique that is more robust to clutter than conventional B-mode imaging. The algorithm is computationally expensive, and has been limited to offline processing to date. By combining SLSC beamforming on the GPU with a Verasonics ultrasound scanner, we have realized a real-time side-by-side B-mode and SLSC imaging system capable of achieving up to 6 frames per second (fps). We demonstrate the system's real-time capabilities with phantom and in vivo scans, and briefly examine the relative performance of B-mode and SLSC imaging.

Paper Details

Date Published: 29 March 2013
PDF: 8 pages
Proc. SPIE 8675, Medical Imaging 2013: Ultrasonic Imaging, Tomography, and Therapy, 86751B (29 March 2013); doi: 10.1117/12.2008686
Show Author Affiliations
Dongwoon Hyun, Duke Univ. (United States)
Gregg E. Trahey, Duke Univ. (United States)
Jeremy Dahl, Duke Univ. (United States)

Published in SPIE Proceedings Vol. 8675:
Medical Imaging 2013: Ultrasonic Imaging, Tomography, and Therapy
Johan G. Bosch; Marvin M. Doyley, Editor(s)

© SPIE. Terms of Use
Back to Top