Share Email Print
cover

Proceedings Paper

Theoretical study of optical switching in multiple core nonlinear microstructured optical fibers
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this study, several approaches to optical switching in multiple core nonlinear microstructured optical fibers are presented. All approaches are based on coupling between the cores of a fiber. Based on Kerr effect, coupling is tuned and detuned by the switching signal. The propagation constants and field distributions are calculated using our in-house fullvectorial finite element mode solver. Copropagation of the signals at the switching and data wavelengths in a multiple core microstructured optical fiber is analyzed using the finite element beam propagation method and coupled mode theory. The crucial factor for successful implementation is the fabrication tolerance. Therefore, the dependence of the coupling efficiency on geometry tolerances is also analyzed. From these inaccuracies, the necessary coupling strength and consequently the switching power are deduced. It is shown that for an accuracy of about 2%, the necessary switching power is approximately 26 W in chalcogenide glass fibers.

Paper Details

Date Published: 18 December 2012
PDF: 8 pages
Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 86971H (18 December 2012); doi: 10.1117/12.2008658
Show Author Affiliations
Pavel Koška, Institute of Photonics and Electronics of the ASCR, v.v.i. (Czech Republic)
Jiří Kaňka, Institute of Photonics and Electronics of the ASCR, v.v.i. (Czech Republic)


Published in SPIE Proceedings Vol. 8697:
18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics
Jan Peřina; Libor Nozka; Miroslav Hrabovský; Dagmar Senderáková; Waclaw Urbańczyk; Ondrej Haderka; Libor Nožka, Editor(s)

© SPIE. Terms of Use
Back to Top