Share Email Print

Proceedings Paper

Segmenting the thoracic, abdominal and pelvic musculature on CT scans combining atlas-based model and active contour model
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Segmentation of the musculature is very important for accurate organ segmentation, analysis of body composition, and localization of tumors in the muscle. In research fields of computer assisted surgery and computer-aided diagnosis (CAD), muscle segmentation in CT images is a necessary pre-processing step. This task is particularly challenging due to the large variability in muscle structure and the overlap in intensity between muscle and internal organs. This problem has not been solved completely, especially for all of thoracic, abdominal and pelvic regions. We propose an automated system to segment the musculature on CT scans. The method combines an atlas-based model, an active contour model and prior segmentation of fat and bones. First, body contour, fat and bones are segmented using existing methods. Second, atlas-based models are pre-defined using anatomic knowledge at multiple key positions in the body to handle the large variability in muscle shape. Third, the atlas model is refined using active contour models (ACM) that are constrained using the pre-segmented bone and fat. Before refining using ACM, the initialized atlas model of next slice is updated using previous atlas. The muscle is segmented using threshold and smoothed in 3D volume space. Thoracic, abdominal and pelvic CT scans were used to evaluate our method, and five key position slices for each case were selected and manually labeled as the reference. Compared with the reference ground truth, the overlap ratio of true positives is 91.1%±3.5%, and that of false positives is 5.5%±4.2%.

Paper Details

Date Published: 18 March 2013
PDF: 6 pages
Proc. SPIE 8670, Medical Imaging 2013: Computer-Aided Diagnosis, 867008 (18 March 2013); doi: 10.1117/12.2007970
Show Author Affiliations
Weidong Zhang, National Institutes of Health Clinical Ctr. (United States)
Jiamin Liu, National Institutes of Health Clinical Ctr. (United States)
Jianhua Yao, National Institutes of Health Clinical Ctr. (United States)
Ronald M. Summers, National Institutes of Health Clinical Ctr. (United States)

Published in SPIE Proceedings Vol. 8670:
Medical Imaging 2013: Computer-Aided Diagnosis
Carol L. Novak; Stephen Aylward, Editor(s)

© SPIE. Terms of Use
Back to Top