Share Email Print
cover

Proceedings Paper

Identification of rolling circulating tumor cells using photoacoustic time-of-flight method
Author(s): Mustafa Sarimollaoglu; Dmitry A. Nedosekin; Ekaterina I. Galanzha; Vladimir P. Zharov
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Existing optical techniques for in vivo measurement of blood flow velocity are not quite applicable for determination of velocity of individual cells or nanoparticles. A time-of-flight photoacoustic (PA) technique can solve this problem by measuring the transient PA signal width, which is related to the cell velocity passing the laser beam. This technique was demonstrated in vivo using an animal (mouse) model by estimating the velocity of nanoparticles, and red and white blood cells labeled with conjugated gold nanorods (GNRs) in the bloodstream. Here we describe the features and the parameters of novel modifications to the PA time-of-flight method and its new application for real-time monitoring of circulating tumor cells (CTCs), such as B16F10 melanoma. This method provided, for the first time, identification of rolling CTCs in analogy to rolling white blood cells and CTC aggregates. Specifically, monitoring of PA signal widths from CTCs in mouse ear microvessels revealed double maxima in peak-width histograms associated with the fast moving portion of CTCs in central flow and slowly rolling CTCs in analogy to white blood cells. We also developed a two-parameter plot representing PA peak amplitude and peak widths. This method allowed identification of fast-moving individual CTCs, CTC aggregates, and rolling CTCs. The discovery of rolling CTCs in relatively large blood vessels indicates a higher probability of CTC extravasations, further increasing the possibility of metastasis through rolling mechanism in addition to mechanical capturing of CTCs in small vessels.

Paper Details

Date Published: 4 March 2013
PDF: 6 pages
Proc. SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing 2013, 858124 (4 March 2013); doi: 10.1117/12.2007964
Show Author Affiliations
Mustafa Sarimollaoglu, Univ. of Arkansas for Medical Sciences (United States)
Dmitry A. Nedosekin, Univ. of Arkansas for Medical Sciences (United States)
Ekaterina I. Galanzha, Univ. of Arkansas for Medical Sciences (United States)
Vladimir P. Zharov, Univ. of Arkansas for Medical Sciences (United States)


Published in SPIE Proceedings Vol. 8581:
Photons Plus Ultrasound: Imaging and Sensing 2013
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top