Share Email Print

Proceedings Paper

Thermal radiant exitance model performance: soils and forests
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Models of surface temperatures of two land surface types based on their energy budgets were developed to simulate the effects of environmental factors on thermal radiant exitance. The performance of these models is examined in detail. One model solves the non-linear differential equation for heat diffusion in solids using a set of submodels for surface energy budget components. The model performance is examined under three desert conditions thought to be a strong test of the submodels. The accuracy of the temperature predictions and submodels is described. The accuracy of the model is generally good but some discrepancies between some of the submodels and measurements are noted. The sensitivity of the submodels is examined and is seen to be strongly controlled by interaction and feedback among energy components that are a function of surface temperature. The second model simulates vegetation canopies with detailed effects of surface geometry on radiant transfer in the canopy. Foliage solar absorption coefficients are calculated using a radiosity approach for a three layer canopy and long wave fluxes are modeled using a view factor matrix. Sensible and latent heat transfer through the canopy are also simulated using nearby meteorological data but heat storage in the canopy is not included. Simulations for a coniferous forest canopy are presented and the sensitivity of the model to environmental inputs is discussed.

Paper Details

Date Published: 31 January 1995
PDF: 12 pages
Proc. SPIE 2314, Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources, (31 January 1995); doi: 10.1117/12.200755
Show Author Affiliations
Lee K. Balick, EG&G Energy Measurements, Inc. (United States)
James Alan Smith, NASA Goddard Space Flight Ctr. (United States)

Published in SPIE Proceedings Vol. 2314:
Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources
Eric Mougin; K. Jon Ranson; James Alan Smith, Editor(s)

© SPIE. Terms of Use
Back to Top