Share Email Print
cover

Proceedings Paper

GPU accelerated OCT processing at megahertz axial scan rate and high resolution video rate volumetric rendering
Author(s): Yifan Jian; Kevin Wong; Marinko V. Sarunic
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this report, we describe how to highly optimize a CUDA based platform to perform real time optical coherence tomography data processing and 3D volumetric rendering using commercially-available cost-effective graphic processing units (GPUs). The maximum complete attainable axial scan processing rate (including memory transfer and rendering frame) was 2.2 megahertz for 16 bits pixel depth and 2048 pixels/A-scan, the maximum 3D volumetric rendering speed is 23 volumes/second (size:1024×256×200). To the best of our knowledge, this is the fastest processing rate reported to date with single-chip GPU and the first implementation of real time video rate volumetric OCT processing and rendering that is capable of matching the ultrahigh-speed OCT acquisition rates.

Paper Details

Date Published: 20 March 2013
PDF: 7 pages
Proc. SPIE 8571, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII, 85710Z (20 March 2013); doi: 10.1117/12.2006670
Show Author Affiliations
Yifan Jian, Simon Fraser Univ. (Canada)
Kevin Wong, Simon Fraser Univ. (Canada)
Marinko V. Sarunic, Simon Fraser Univ. (Canada)


Published in SPIE Proceedings Vol. 8571:
Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII
James G. Fujimoto; Joseph A. Izatt; Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top