Share Email Print
cover

Proceedings Paper

Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set
Author(s): Xulei Qin; Zhibin Cong; Luma V. Halig; Baowei Fei
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%±2.3% and 83.6±7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

Paper Details

Date Published: 13 March 2013
PDF: 7 pages
Proc. SPIE 8669, Medical Imaging 2013: Image Processing, 86690Q (13 March 2013); doi: 10.1117/12.2006490
Show Author Affiliations
Xulei Qin, Emory Univ. (United States)
Zhibin Cong, Emory Univ. (United States)
Luma V. Halig, Emory Univ. (United States)
Baowei Fei, Emory Univ. (United States)
Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 8669:
Medical Imaging 2013: Image Processing
Sebastien Ourselin; David R. Haynor, Editor(s)

© SPIE. Terms of Use
Back to Top