Share Email Print

Proceedings Paper

Magnetic red blood cells as new contrast agents for MRI applications
Author(s): Antonella Antonelli; Carla Sfara; Elisabetta Manuali; Sonia Salamida; Gaëlle Louin; Mauro Magnani
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Superparamagnetic iron oxide (SPIO) nanoparticles have been produced and used successfully as potent contrast agents for Magnetic Resonance Imaging (MRI). However, a significant challenge associated with the biological application of SPIO-tracer agents is their behavior in vivo since their efficacy is often compromised due to a rapid recognition and clearance by the reticuloendothelial system (RES) which limits the applicability of such compounds in MRI. The advances in nanotechnology and molecular cell biology had lead to improve stability and biocompatibility of these nanoparticles, but despite a number of efforts, the SPIO half-life in blood circulation is very short. In this contest, the potential of red blood cells (RBCs) loaded with SPIO nanoparticles as a tracer material for MRI has been investigated in order to realize a blood pool tracer with longer blood retention time. Previously, we have proposed the encapsulation into RBCs of superparamagnetic iron oxide nanoparticles carboxydextran coated, such as Resovist contrast agent. This approach led to a nanoparticle reduction in uptake by the RES, increasing the blood circulation half-life of nanoparticles. Recently, the loading procedure was applied to a new contrast agent, the P904 ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles coated by hydrophilic derivatives of glucose, recently developed by Guerbet Laboratories. The results evidenced that this nanomaterial can be efficiently loaded into human and murine RBCs at concentrations ranging from 1.5 to 12 mM Fe. In vivo experiments performed in mice have showed an increased survival in the mouse vascular system of P904 encapsulated into RBCs respect to free P904 sample intravenously injected at the equivalent amounts.

Paper Details

Date Published: 29 March 2013
PDF: 8 pages
Proc. SPIE 8672, Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, 86721D (29 March 2013); doi: 10.1117/12.2005930
Show Author Affiliations
Antonella Antonelli, Univ. of Urbino Carlo Bo (Italy)
Carla Sfara, Univ. of Urbino Carlo Bo (Italy)
Elisabetta Manuali, Experimental Zooprofilactic Institute of Umbria and Marche (Italy)
Sonia Salamida, Experimental Zooprofilactic Institute of Umbria and Marche (Italy)
Gaëlle Louin, Guerbet Research Group (France)
Mauro Magnani, Univ. of Urbino Carlo Bo (Italy)

Published in SPIE Proceedings Vol. 8672:
Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging
John B. Weaver; Robert C. Molthen, Editor(s)

© SPIE. Terms of Use
Back to Top