Share Email Print

Proceedings Paper

Micromachining of Ti-3Al-2.5V tubes by nanosecond Nd:YAG laser
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser micromachining is one of many laser material processing technologies employed in scientific research and engineering applications. It involves the deposition of photon energy and the material interaction. The intense photothermal energy is transported into the target material causing melting and evaporation. The material is removed layer by layer by melting and flowing away or by direct vaporization / ablation. It is due to the focused small spot size that the laser micromachining can remove material in small quantity at a time, thus precise control of geometrical dimension is possible. In this work, a nanosecond pulsed Nd:Yttrium-Aluminum-Garnet (Nd:YAG) laser was employed to generate relatively long notch of different dimensions (25.4 mm-length × 0.1 mm-width × 0.051/0.102/0.152 mmdepth) on Ti-3Al-2.5V seamless tubes for fatigue life study. Cyclic hydraulic impulse pressure test was conducted to find out the fatigue limits of the titanium tube containing the laser micromachined notch. The results of fatigue lives, crack profile and pattern of crack propagation are presented and discussed in this paper. Scanning electron microscopy was employed to characterize the fatigue crack profile and the laser micronotch. The capability of generating sharper notch root and consistent pre-crack on the surface of materials makes nanosecond pulsed Nd:YAG laser a great choice in preparing for fatigue test samples for crack growth life study.

Paper Details

Date Published: 13 March 2013
PDF: 8 pages
Proc. SPIE 8607, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, 86071N (13 March 2013); doi: 10.1117/12.2005919
Show Author Affiliations
Yaomin Lin, Alfred E. Mann Foundation for Scientific Research (United States)
Mool C. Gupta, Univ. of Virginia (United States)

Published in SPIE Proceedings Vol. 8607:
Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII
Xianfan Xu; Guido Hennig; Yoshiki Nakata; Stephan W. Roth, Editor(s)

© SPIE. Terms of Use
Back to Top