Share Email Print

Proceedings Paper

Three-dimensional diffuse optical tomography with full multi-view time-domain data
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work, synthetic time-domain data are generated as if it were collected with a state-of-the-art multi-view experimental optical scanner developed in our group for small animal imaging, and used in a tomographic image reconstruction algorithm. The collected data comprises full time-dependent optical signals leaving the biological medium and acquired all around the medium. The diffuse optical tomography (DOT) algorithm relies on the time dependent parabolic simplified spherical harmonics (TD-pSPN) equations as the forward model to recover the 3D absorption and diffusion coefficient maps of the medium. The inverse problem is casted and solved as an iterative constrained optimization problem where an objective function determines the accuracy of the forward model predictions at each iteration. Time-dependent adjoint variables are introduced to accelerate the calculation of the gradient of the objective function. A three-dimensional case involving an absorption heterogeneity in a homogeneous medium is presented, reproducing practical situations encountered in our lab. The results support our hypothesis that accurate quantitative 3D maps of optical properties of biological tissues can be retrieved using intrinsic measurements obtained with our experimental scanner along with our DOT algorithm.

Paper Details

Date Published: 25 March 2013
PDF: 7 pages
Proc. SPIE 8578, Optical Tomography and Spectroscopy of Tissue X, 85782A (25 March 2013); doi: 10.1117/12.2005650
Show Author Affiliations
Jorge Bouza Domìnguez, Univ. de Sherbrooke (Canada)
Yves Bérubé-Lauzière, Univ. de Sherbrooke (Canada)

Published in SPIE Proceedings Vol. 8578:
Optical Tomography and Spectroscopy of Tissue X
Bruce J. Tromberg; Arjun G. Yodh; Eva Marie Sevick-Muraca, Editor(s)

© SPIE. Terms of Use
Back to Top