Share Email Print
cover

Proceedings Paper

Photonic quasi-crystals in Fourier and Fourier-Bessel space
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photonic crystals that are aperiodic or quasi-crystalline in nature have been the focus of research due to their complex spatial distributions, resulting in high order rotational symmetries. Recently we proposed aperiodic patterns that were rotationally symmetric while being random in the radial direction. The structures are designed by segmenting the circular design space, randomly populating one segment, and repeating that segment about a center of rotation. Studying the symmetries and geometrical attributes of aperiodic structures is typically performed in reciprocal Fourier space by examining the distribution of the Fourier coefficients. This allows the translational symmetry to be directly extracted and the rotational nature to be interpreted. Instead we propose comparing the typical Fourier analysis with the use of a Fourier-Bessel space. The Fourier-Bessel approach expands the dielectric layout in cylindrical coordinates using exponential and Bessel functions as the angular and radial basis functions. The coefficients obtained in this fashion directly provide the rotational symmetries that are present. This work will examine both the Fourier and Fourier-Bessel distributions of the proposed structures as well as other quasi-crystals in order to explore the strengths and weaknesses of both techniques.

Paper Details

Date Published: 21 February 2013
PDF: 6 pages
Proc. SPIE 8632, Photonic and Phononic Properties of Engineered Nanostructures III, 863213 (21 February 2013); doi: 10.1117/12.2005621
Show Author Affiliations
S. R. Newman, Carleton Univ. (Canada)
R. C. Gauthier, Carleton Univ. (Canada)


Published in SPIE Proceedings Vol. 8632:
Photonic and Phononic Properties of Engineered Nanostructures III
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top