Share Email Print
cover

Proceedings Paper

Optical sensing characteristics of nanostructures supporting multiple localized surface plasmon resonances
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to traditional propagating surface plasmon based sensors, LSPR sensors offer extensive wavelength tunability, greater electric field enhancement and sensing in reduced volumes. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index changes and non-specific binding as well as specific binding of the target analyte. These interactions can compromise the measurement of the target analyte in a complex unknown media and hence limit the applicability and impact of the sensor. Despite the extensive amount of work done in this field, there has been an absence of optical techniques that make these sensors immune to interfering effects. Recently, our group experimentally demonstrated a multi-mode LSPR sensor that exploits three resonances of a U-shaped gold nanostructure to differentiate the target interaction from bulk and surface interfering effects. In this paper, we provide a comprehensive description of the electric field profiles of the three resonances of the U-shaped nanostructure. We will also evaluate the sensitivities of the nanostructure to the various bulk and surface interactions using numerical simulations.

Paper Details

Date Published: 19 February 2013
PDF: 6 pages
Proc. SPIE 8594, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications X, 859405 (19 February 2013); doi: 10.1117/12.2005218
Show Author Affiliations
Neha Nehru, Univ. of Kentucky (United States)
J. Todd Hastings, Univ. of Kentucky (United States)


Published in SPIE Proceedings Vol. 8594:
Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications X
Alexander N. Cartwright; Dan V. Nicolau, Editor(s)

© SPIE. Terms of Use
Back to Top