Share Email Print
cover

Proceedings Paper

Electromagnetic modeling of surface plasmon resonance with Kretschmann configuration for biosensing applications in a CMOS-compatible interface
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Surface Plasmon Resonance (SPR) is a wave phenomenon occurring at an interface between a dielectric and a metal. SPR has applications in label-free biodetection systems, where advances in microfabrication techniques are fostering the development of SPR-based labs-on-a-chip. This work presents a numerical analysis for the excitation of SPR using Kretschmann's configuration. With a SiO2 prism, an Au metal layer, and water as the dielectric, the system is made to be compatible with a post-CMOS microfabrication process. The results obtained from both theory and software simulation show that for a light source at 633 nm, a 50 nm thick Au film is optimal, with the reflectivity falling to a minimum of ~2% at an angle of ~68.5°, due to maximum electromagnetic SPR coupling. Simulations with a Ti adhesion layer were also performed, showing a negative effect by increasing to ~17% the minimum reflectivity when SPR is achieved, thus reducing the dynamic range of the signal captured by the system's photodetector. SPR biosensors work by monitoring changes on the refractive index close to the SPR interface, these changes were simulated showing that a change of ~10-4 RIU on the dielectric medium produces a ~0.01°change in the SPR angle. These results will facilitate the physical implementation of label-free biosensing platforms with a CMOS image sensor (CIS) photodetection stage.

Paper Details

Date Published: 14 March 2013
PDF: 8 pages
Proc. SPIE 8619, Physics and Simulation of Optoelectronic Devices XXI, 86190V (14 March 2013); doi: 10.1117/12.2004766
Show Author Affiliations
A. Salazar, Tecnológico de Monterrey (Mexico)
Univ. Joseph Fourier, CNRS (France)
S. Camacho-Leon, Tecnológico de Monterrey (Mexico)
O. Rossetto, Univ. Joseph Fourier, CNRS (France)
S. O. Martínez-Chapa, Tecnológico de Monterrey (Mexico)


Published in SPIE Proceedings Vol. 8619:
Physics and Simulation of Optoelectronic Devices XXI
Bernd Witzigmann; Marek Osinski; Fritz Henneberger; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top