Share Email Print
cover

Proceedings Paper

Digitized forensics: retaining a link between physical and digital crime scene traces using QR-codes
Author(s): Mario Hildebrandt; Stefan Kiltz; Jana Dittmann
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The digitization of physical traces from crime scenes in forensic investigations in effect creates a digital chain-of-custody and entrains the challenge of creating a link between the two or more representations of the same trace. In order to be forensically sound, especially the two security aspects of integrity and authenticity need to be maintained at all times. Especially the adherence to the authenticity using technical means proves to be a challenge at the boundary between the physical object and its digital representations. In this article we propose a new method of linking physical objects with its digital counterparts using two-dimensional bar codes and additional meta-data accompanying the acquired data for integration in the conventional documentation of collection of items of evidence (bagging and tagging process). Using the exemplary chosen QR-code as particular implementation of a bar code and a model of the forensic process, we also supply a means to integrate our suggested approach into forensically sound proceedings as described by Holder et al.1 We use the example of the digital dactyloscopy as a forensic discipline, where currently progress is being made by digitizing some of the processing steps. We show an exemplary demonstrator of the suggested approach using a smartphone as a mobile device for the verification of the physical trace to extend the chain-of-custody from the physical to the digital domain. Our evaluation of the demonstrator is performed towards the readability and the verification of its contents. We can read the bar code despite its limited size of 42 x 42 mm and rather large amount of embedded data using various devices. Furthermore, the QR-code's error correction features help to recover contents of damaged codes. Subsequently, our appended digital signature allows for detecting malicious manipulations of the embedded data.

Paper Details

Date Published: 7 March 2013
PDF: 11 pages
Proc. SPIE 8667, Multimedia Content and Mobile Devices, 86670S (7 March 2013); doi: 10.1117/12.2004548
Show Author Affiliations
Mario Hildebrandt, Otto-von-Guericke-Univ. Magdeburg (Germany)
Stefan Kiltz, Otto-von-Guericke-Univ. Magdeburg (Germany)
Jana Dittmann, Otto-von-Guericke-Univ. Magdeburg (Germany)


Published in SPIE Proceedings Vol. 8667:
Multimedia Content and Mobile Devices
Reiner Creutzburg; Todor G. Georgiev; Dietmar Wüller; Cees G. M. Snoek; Kevin J. Matherson; David Akopian; Andrew Lumsdaine; Lyndon S. Kennedy, Editor(s)

© SPIE. Terms of Use
Back to Top