Share Email Print

Proceedings Paper

Improvement in etching rate for epilayer lift-off with surfactant
Author(s): Fan-Lei Wu; Ray-Hua Horng; Jian-Heng Lu; Chun-Li Chen; Yu-Cheng Kao
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.

Paper Details

Date Published: 25 March 2013
PDF: 6 pages
Proc. SPIE 8620, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II, 86201Y (25 March 2013); doi: 10.1117/12.2004237
Show Author Affiliations
Fan-Lei Wu, National Chung Hsing Univ. (Taiwan)
Ray-Hua Horng, National Chung Hsing Univ. (Taiwan)
Jian-Heng Lu, National Chung Hsing Univ. (Taiwan)
Chun-Li Chen, National Chung Hsing Univ. (Taiwan)
Yu-Cheng Kao, National Chung Hsing Univ. (Taiwan)

Published in SPIE Proceedings Vol. 8620:
Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II
Alexandre Freundlich; Jean-Francois Guillemoles, Editor(s)

© SPIE. Terms of Use
Back to Top