Share Email Print

Proceedings Paper

Real-time bicycle detection at signalized intersections using thermal imaging technology
Author(s): Robin Collaert; Kristof Maddelein
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions.

As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

Paper Details

Date Published: 19 February 2013
PDF: 8 pages
Proc. SPIE 8656, Real-Time Image and Video Processing 2013, 865604 (19 February 2013); doi: 10.1117/12.2003573
Show Author Affiliations
Robin Collaert, Traficon International N.V (Belgium)
Kristof Maddelein, Traficon (Belgium)

Published in SPIE Proceedings Vol. 8656:
Real-Time Image and Video Processing 2013
Nasser Kehtarnavaz; Matthias F. Carlsohn, Editor(s)

© SPIE. Terms of Use
Back to Top