Share Email Print
cover

Proceedings Paper

FBG pressure sensor of high pressure electric oil pumps for prestressing
Author(s): Zhenwu Guo; Guangwei Liu; Qingbin Meng; Fuwei Ge; Weixiang Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Prestressed concrete structure is getting more and more extensive application in architecture, hydraulic engineering and traffic engineering because of its significant advantages of crack later or not cracks completely. It is an internal stress concrete structure that a certain force relies on prestressing tendons. The effectivity of the prestressing tendon in concrete structure is directly related to the reliability, applicability and viability of the whole concrete structure. So it is a key program to apply accurate prestress to the prestressing tendon. According to the pressure sensing principle of the fiber Bragg grating (FBG), a circular plate diaphragm-based FBG sensor for high pressure electric oil pumps that is the pressure source device of the prestressed concrete structure was presented. To overcome the cross sensitivity of temperature and pressure, two FBGs were integrated in the sensor, one of the FBGs isolated from the pressure is used as temperature compensation grating, it is called temperature-FBG comparing to another FBG called pressure-FBG. The elastic diaphragm was chosen as the pressure sensing element whose distortion displace is proportional to the difference of the two sides’ pressure of the diaphragm. A certain stress is applied to the pressure-FBG which is stuck to the center of the diaphragm, and then the reflection wavelength of the pressure-FBG is inverse proportional to load of the diaphragm. The results indicated that the linearity is up to 99.99%, and the pressure sensitivity coefficient is 0.024nm/MPa within the measurement scope of 0-70MPa.

Paper Details

Date Published: 14 March 2013
PDF: 7 pages
Proc. SPIE 8619, Physics and Simulation of Optoelectronic Devices XXI, 86191S (14 March 2013); doi: 10.1117/12.2003360
Show Author Affiliations
Zhenwu Guo, Nankai Univ. (China)
Guangwei Liu, Nankai Univ. (China)
Qingbin Meng, Nankai Univ. (China)
Fuwei Ge, Nankai Univ. (China)
Weixiang Li, Nankai Univ. (China)


Published in SPIE Proceedings Vol. 8619:
Physics and Simulation of Optoelectronic Devices XXI
Bernd Witzigmann; Marek Osinski; Fritz Henneberger; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top