Share Email Print
cover

Proceedings Paper

Fabrication of the reliable (14-18)x1 fiber laser power combiner by the novel double bundling method
Author(s): Bok Hyeon Kim; Seon-Ju Kim; Youngkab Yoon; Swook Hann
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Recently, the high power fiber laser has attracted much attention and the laser power combiner is one of the key components for power scaling in the high power laser system. Up to now, several methods have been exploited to develop the combiner and among them the tapered fusion bundling method becomes one of the most popular and reliable technology. In the conventional tapered fusion bundling method, the input fibers were bundled with the honeycomb configuration then fused tapered and spliced to the output fiber. In the method, however, the fiber ports configuration was constrained to certain values such as 3×1, 7×1, 19×1, and 35×1 to satisfy the compactness and reliability in the bundling procedure. In this study, we suggest a novel double bundling method to make combiners with the large flexibility in the fiber port configuration. In making the (14-18)×1 combiners, seven input fibers in the honeycomb stacking configuration was fused bundled and a single layer of secondary 7-11 fibers were stacked outside of the bundle and subsequently tapered and spliced to a output fiber. As a result, (14-18)×1 laser power combiners were made using 105/125 μm input fibers (0.15 NA) and a 200/220 μm output fiber (0.46 NA). In the bundling procedures a LPG torch was used and process parameters such as the gas flow and the tapering length/speed/frequency were optimized. The power transmission efficiency of the combiner was larger than 93% in all ports at the handling power of 100 W.

Paper Details

Date Published: 11 March 2013
PDF: 6 pages
Proc. SPIE 8621, Optical Components and Materials X, 862118 (11 March 2013); doi: 10.1117/12.2002934
Show Author Affiliations
Bok Hyeon Kim, Advanced Photonics Research Institute (Korea, Republic of)
Seon-Ju Kim, Lighting Solution Technology Co. Ltd. (Korea, Republic of)
Youngkab Yoon, Lighting Solution Technology Co. Ltd. (Korea, Republic of)
Swook Hann, Korea Photonics Technology Institute (Korea, Republic of)


Published in SPIE Proceedings Vol. 8621:
Optical Components and Materials X
Michel J. F. Digonnet; Shibin Jiang; J. Christopher Dries, Editor(s)

© SPIE. Terms of Use
Back to Top