Share Email Print
cover

Proceedings Paper

Investigation of temperature influence on output performances of high-power cladding-pumped Er,Yb co-doped fiber laser
Author(s): Wenting Chen; Jianjian Sha; Yong Wang; Deyuan Shen
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Effect of the fiber’s temperature on lasing performance is investigated in high-power, cladding-pumped Er, Yb co-doped fiber laser system. A three-layer symmetric cylindrical model is applied to describe the temperature distribution of the fiber under natural air convection. Radial temperature distribution of the fiber is calculated with consideration of the quantum defect heat, the heat from the absorption of spontaneous emission, and the convection and radiation at the heat transfer boundaries. The steady-state theoretical model based on rate equations takes into account of the energy transfers between Er3+-ions and Yb3+-ions and a fraction of nonparticipatory Yb3+-ions. Shooting method and Newton iteration method are used to solve the boundary-value problems under different environmental temperatures, pump powers and reflectivities at the fiber ends. Numerical simulations are consistent with experimental results and show that increasing the fiber’s temperature is an effective strategy to suppress the 1 μm parasitic lasing and improve the lasing performance at 1.5 μm, a similar phenomenon is found with enhancing doping concentrations of the two ions and decreasing the reflectivities at the fiber ends. Our numerical results present a theoretical guideline for further improving the laser performance in terms of output power of ~1.5 μm in high-power Er,Yb-doped fiber laser systems.

Paper Details

Date Published: 22 March 2013
PDF: 11 pages
Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86012A (22 March 2013); doi: 10.1117/12.2002720
Show Author Affiliations
Wenting Chen, Fudan Univ. (China)
Jianjian Sha, Fudan Univ. (China)
Yong Wang, Fudan Univ. (China)
Deyuan Shen, Fudan Univ. (China)


Published in SPIE Proceedings Vol. 8601:
Fiber Lasers X: Technology, Systems, and Applications
Sami T. Hendow, Editor(s)

© SPIE. Terms of Use
Back to Top